What is K-means?
1. Partitional clustering approach
2. Each cluster is associated with a centroid (center point)
3. Each point is assigned to the cluster with the closest centroid
4 Number of clusters K must be specified
Following Code will find the value of K :
Code:
Main.Java
import java.util.ArrayList;
1. Partitional clustering approach
2. Each cluster is associated with a centroid (center point)
3. Each point is assigned to the cluster with the closest centroid
4 Number of clusters K must be specified
Following Code will find the value of K :
Code:
Main.Java
import java.util.ArrayList;
import java.util.Collections;
public class Main {
public static void main(String[] args) {
long start=System.currentTimeMillis();
int k=1;
Point[] p=new Point[5];
p[0]=new Point(1,1);
p[1]=new Point(1,0);
p[2]=new Point(0,2);
p[3]=new Point(2,4);
p[4]=new Point(3,5);
ArrayList<Point> given=new ArrayList<>();
given.add(p[0]);
given.add(p[1]);
given.add(p[2]);
given.add(p[3]);
given.add(p[4]);
Collections.shuffle(given);
Point c1=new Point(given.get(0));
Point c2=new Point(given.get(1));
ArrayList<Point>cluster1=new ArrayList<>();
ArrayList<Point>cluster2=new ArrayList<>();
ArrayList<Point>newcluster1=new ArrayList<>();
ArrayList<Point>newcluster2=new ArrayList<>();
double dc1,dc2;
for(int i=0;i<5;i++) {
dc1=c1.distance(p[i]);
dc2=c2.distance(p[i]);
if(dc1<dc2) {
cluster1.add(p[i]);
}else if(dc2<dc1) {
cluster2.add(p[i]);
}
}
c1.x=meanx(cluster1);
c1.y=meany(cluster1);
c2.x=meanx(cluster2);
c2.y=meany(cluster2);
do {
if(!(newcluster1.isEmpty()&& newcluster2.isEmpty())) {
cluster1.clear();
System.out.println(cluster1.size());
cluster1.addAll(newcluster1);
cluster2.clear();
cluster2.addAll(newcluster2);
newcluster1.clear();
newcluster2.clear();
}
for(int i=0;i<5;i++) {
dc1=c1.distance(p[i]);
dc2=c2.distance(p[i]);
if(dc1<=dc2) {
newcluster1.add(p[i]);
}else {
newcluster2.add(p[i]);
}
}
c1.x=meanx(newcluster1);
c1.y=meany(newcluster1);
c2.x=meanx(newcluster2);
c2.y=meany(newcluster2);
k++;
}while(!(compareCluster(cluster1, newcluster1)||compareCluster(cluster1, newcluster2))&&(compareCluster(cluster2, newcluster2)||compareCluster(cluster2, newcluster1)));
System.out.println("Value of K is : "+k);
System.out.println("Time Taken : "+(System.currentTimeMillis()-start)+" milliseconds");
}
static boolean compareCluster(ArrayList<Point> c1,ArrayList<Point> c2) {
if(c1.size()!=c2.size()||c1==null&&c2!=null||c1!=null&&c2==null) return false;
if(c1==null && c2==null) return true;
for(int i=0;i< c1.size();i++){
if(! c2.contains(c1.get(i))) return false;
}
return true;
}
static double meanx(ArrayList<Point> c) {
double sumx=0;
for(int i=0;i<c.size();i++) {
sumx+=c.get(i).x;
}
return sumx/c.size();
}
static double meany(ArrayList<Point> c) {
double sumy=0;
for(int i=0;i<c.size();i++) {
sumy+=c.get(i).y;
}
return sumy/c.size();
}
}
-------------------------------------------------------------------------------------------
Point.Java
public class Point { double x,y; Point(double a,double b){ x=a; y=b; } Point(Point b){ x=b.x; y=b.y; } double distance(Point b) { return Math.sqrt(Math.pow((x-b.x),2)+Math.pow((y-b.y),2)); } @Override public String toString() { return "Point [x=" + x + ", y=" + y + "]"; } }
For any Suggestions please Click Here
Output: